How do you find the lengths of the curve 8x=2y^4+y^-28x=2y4+y2 for 1<=y<=21y2?

1 Answer
Apr 26, 2017

8x=2y^4+y^(-2)8x=2y4+y2

implies x'=y^3- 1/4 y^(-3)

s = int_1^2 sqrt( 1 + (x')^2) \ dy

= int_1^2 sqrt( 1 + (y^3- 1/4 y^(-3))^2) \ dy

= int_1^2 sqrt( 1 + y^6 + 1/16 y^(-6)- 1/2) \ dy

= int_1^2 sqrt( y^6 + 1/16 y^(-6) + 1/2) \ dy

= int_1^2 sqrt( (y^3 + 1/4 y^(-3))^2) \ dy

= int_1^2 y^3 + 1/4 y^(-3) \ dy

= [ y^4/4 - 1/(8 y^2) ]_1^2

= 123/32