How do you find the limit of lnt/sqrt(1-t) as t->1^-?

1 Answer
Jan 12, 2017

lim_(x->1^-) lnt/sqrt(1-t) = 0

Explanation:

We have that:

lim_(x->1^-) lnt = 0

lim_(x->1^-) sqrt(1-t) = 0

so that the limit:

lim_(x->1^-) lnt/sqrt(1-t)

is in the indeterminate form 0/0

We can then use l'Hospital's rule:

lim_(x->1^-) lnt/sqrt(1-t) = lim_(x->1^-) (d/(dt)lnt)/(d/(dt)sqrt(1-t))= lim_(x->1^-) (1/t)/(-1/2 1/sqrt(1-t))=lim_(x->1^-) -2sqrt(1-t)/t=0