How do you find the limit of x(a^(1/x)-1) as x->oo?

2 Answers
Jun 1, 2017

log_e a

Explanation:

x(a^(1/x)-1)= (a^(0+1/x)-a^0)/(1/x) now calling 1/x = h we have

lim_(x->oo)x(a^(1/x)-1)=lim_(h->0)(a^(0+h)-a^0)/h = a^0log_e a=log_e a

Jun 1, 2017

ln(a)

Explanation:

Rewrite the limit as

lim_(x->oo)(a^(1/x)-1)/(1/x)

So that it produces the indeterminate form 0/0.

Now use L'hopital's rule (and chain rule as a result):

lim_(x->oo)(a^(1/x)-1)/(1/x)=lim_(x->oo)(a^(1/x) * ln(a) * (-1)/x^2)/((-1)/x^2)

=lim_(x->oo)a^(1/x)ln(a) = a^0ln(a) = ln(a)

Final Answer