How do you find the limit of x^x as x>0^-?

1 Answer
Dec 14, 2017

lim_(x->0^+) x^x = 1

Explanation:

Write the function as:

x^x = (e^lnx)^x =e^(xlnx)

Note now that:

lim_(x->0^+) xlnx

is in the indeterminate form 0*oo. We can reconduce it to the form oo/oo and then apply l'Hospital's rule:

lim_(x->0^+) xlnx = lim_(x->0^+) lnx/(1/x) = lim_(x->0^+) (d/dx lnx)/(d/dx 1/x) = lim_(x->0^+) (1/x)/(-1/x^2) = lim_(x->0^+) -x = 0

As e^x is a continuous function near 0:

lim_(x->0^+) e^(xlnx) = e^(lim_(x->0^+) xlnx) = e^0 = 1

graph{x^x [-10, 10, -5, 5]}