Using the difference of squares we could write
(4y+3z)(4y-3z)^2=color(blue)((4y+3z)(4y-3z))(4y-3z)(4y+3z)(4y−3z)2=(4y+3z)(4y−3z)(4y−3z)
color(white)("XXXXXXXXXXX")=color(blue)(((4y)^2-(3z)^2))(4y-3z)XXXXXXXXXXX=((4y)2−(3z)2)(4y−3z)
color(white)("XXXXXXXXXXX")=(16y^2-9z^2)(4y-3)XXXXXXXXXXX=(16y2−9z2)(4y−3)
Then using the distributive property or tabular multiplication:
{:(underline(xx)," | ",underline(+16y^2),underline(-9z^2)),
(+4y," | ",+64y^3,-36yz^2),
(underline(-3z),ul(" | "),ul(-48y^2z),ul(+27z^3)),
(color(green)(+64y^3),color(green)(-48y^2z),color(green)(-36yz^2),color(green)(+27z^3))
:}