How do you find the product (6z^2-5z-2)(3z^3-2z-4)(6z25z2)(3z32z4)?

1 Answer
Apr 15, 2017

18z^5-18z^3-29z^2+24z+818z518z329z2+24z+8

Explanation:

Given -

(6z^2-5z-2)(3z^3-2z-4)(6z25z2)(3z32z4)

Multiply each term in the expression (6z^2-5z-2)(6z25z2) with 3z^33z3

18z^5-15z^2-6z^318z515z26z3

Multiply each term in the expression (6z^2-5z-2)(6z25z2) with -2z2z

18z^5-15z^2-6z^3-12z^3+10z^2+4z18z515z26z312z3+10z2+4z

Multiply each term in the expression (6z^2-5z-2)(6z25z2) with -44

18z^5-15z^2-6z^3-12z^3+10z^2+4z-24z^2+20z+818z515z26z312z3+10z2+4z24z2+20z+8

Group all the like terms

18z^5-6z^3-12z^3-15z^2+10z^2-24z^2+4z+20z+818z56z312z315z2+10z224z2+4z+20z+8

Simplify

18z^5-18z^3-29z^2+24z+818z518z329z2+24z+8