How do you find the product (8-10a)^2(810a)2?

1 Answer
Jun 30, 2017

See a solution process below:

Explanation:

This is a special for of a quadratic where:

(a - b)^2 = a^2 - 2ab + b^2(ab)2=a22ab+b2

Substituting:

88 for aa

10a10a for bb

Gives:

(8 - b)^2 = 8^2 - (2 * 8 * 10a) + (10a)^2 =(8b)2=82(2810a)+(10a)2=

64 - 160a + 100a^264160a+100a2

Or, in standard polynomial form:

100a^2 - 160a + 64100a2160a+64