How do you find the product of (x + 5)^2(x+5)2?

3 Answers

x^2 + 10x + 25x2+10x+25

Explanation:

We can use Binomial Expansion to find the product.

The Binomial Theorem States that,

For Any Integer n gt 0n>0,

(x + y)^n =(x+y)n= (n(n combination 0)x^n + (n0)xn+(n combination 1)x^(n-1)y^11)xn1y1 + .............. + (n(n combination n-1)x^1y^(n-1) + (nn1)x1yn1+(n combination n)y^nn)yn

So, Here, use can use the formula.

(x + 5)^2 =(x+5)2= (2(2 combination 0)x^2 + (20)x2+(2 combination 1)x^(2-1)5^11)x2151 + (2(2 combination 1)x^1 5^(2-1) + (21)x1521+(2 combination 2)5^22)52

= 1 xx x^2 + 1 xx x * 5 + 1 xx x* 5 + 1 xx 5^21×x2+1×x5+1×x5+1×52

[You should learn Permutations And Combinations Prior to this step.]

= x^2 + 5x + 5x + 25x2+5x+5x+25

=x^2 + 10x + 25x2+10x+25

Hope this helps.

Mar 20, 2018

x^2 + 10x + 25x2+10x+25

Explanation:

color(white)(xx)(x + 5)^2×(x+5)2

= (x + 5)(x + 5)=(x+5)(x+5) [Break it up]

= x(x + 5) + 5(x + 5)=x(x+5)+5(x+5) [Multiply]

= (x^2 + 5x) +(5x + 25)=(x2+5x)+(5x+25) [Distributive Property]

= x^2 + 5x + 5x + 25=x2+5x+5x+25

= x^2 + 10x + 25=x2+10x+25 [Add everything up]

Hence Explained.

Mar 20, 2018

FOIL(First, Outer, Inner, Last)
Answer: x^2+10x+25x2+10x+25

Explanation:

(x+5)^2=(x+5)(x+5)(x+5)2=(x+5)(x+5)
First- Multiply x*xxx to get x^2x2
Outer- x*5=5xx5=5x
Inner- 5*x=5x5x=5x
Last- 5*5=2555=25
We know have x^2+5x+5x+25x2+5x+5x+25
5x+5x=10x5x+5x=10x
x^2+10x+25x2+10x+25