How do you find the product (p+2)(p-10)(p+2)(p10)?

2 Answers
Mar 13, 2018

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

(color(red)(p) + color(red)(2))(color(blue)(p) - color(blue)(10))(p+2)(p10) becomes:

(color(red)(p) xx color(blue)(p)) - (color(red)(p) xx color(blue)(10)) + (color(red)(2) xx color(blue)(p)) - (color(red)(2) xx color(blue)(10))(p×p)(p×10)+(2×p)(2×10)

p^2 - 10p + 2p - 20p210p+2p20

We can now combine like terms:

p^2 + (-10 + 2)p - 20p2+(10+2)p20

p^2 + (-8)p - 20p2+(8)p20

p^2 - 8p - 20p28p20

Mar 13, 2018

Using distributive property of product regarding the sum. See below

Explanation:

(p+2)(p-10)=p(p-10)+2(p-10)=p^2-10p+2p-20=p^2-8p-20(p+2)(p10)=p(p10)+2(p10)=p210p+2p20=p28p20