How do you find the product (x^2+5x-1)(5x^2-6x+1)(x2+5x1)(5x26x+1)?

1 Answer
Feb 12, 2017

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

(color(red)(x^2) + color(red)(5x) - color(red)(1))(color(blue)(5x^2) - color(blue)(6x) + color(blue)(1))(x2+5x1)(5x26x+1) becomes:

(color(red)(x^2) xx color(blue)(5x^2)) - (color(red)(x^2) xx color(blue)(6x)) + (color(red)(x^2) xx color(blue)(1)) + (color(red)(5x) xx color(blue)(5x^2)) - (color(red)(5x) xx color(blue)(6x)) + (color(red)(5x) xx color(blue)(1)) - (color(red)(1) xx color(blue)(5x^2)) + (color(red)(1) xx color(blue)(6x)) - (color(red)(1) xx color(blue)(1))(x2×5x2)(x2×6x)+(x2×1)+(5x×5x2)(5x×6x)+(5x×1)(1×5x2)+(1×6x)(1×1)

5x^4 - 6x^3 + x^2 + 25x^3 - 30x^2 + 5x - 5x^2 + 6x - 15x46x3+x2+25x330x2+5x5x2+6x1

We can now group and combine like terms:

5x^4 - 6x^3 + 25x^3 + x^2 - 30x^2 - 5x^2 + 5x + 6x - 15x46x3+25x3+x230x25x2+5x+6x1

5x^4 + (-6 + 25)x^3 + (1 - 30 - 5)x^2 + (5 + 6)x - 15x4+(6+25)x3+(1305)x2+(5+6)x1

5x^4 + 19x^3 - 34x^2 + 11x - 15x4+19x334x2+11x1