How do you find the value of cos((17pi)/12)?

1 Answer
Aug 17, 2016

- sqrt(2 - sqrt3)/2

Explanation:

Trig unit circle -->
cos ((17pi)/12) = cos ((5pi)/12 + pi) = - cos ((5pi)/12) (1)
Find cos ((5pi)/12 by using the trig identity:
2cos^2 t = 1 + cos 2t
Call cos ((5pi)/12) = cos t
Trig table -->
2cos^2 t = 1 + cos ((10pi)/12) = 1 + cos ((5pi)/6) = 1 - sqrt3/2
cos ^2 t = (2 - sqrt3)/4
cos t = cos ((5pi)/12) = sqrt(2 - sqrt3)/2
Take the positive answer because cos ((5pi)/12) is positive.
Back to (1)
cos ((17pi)/12) = - cos t = - sqrt(2 - sqrt3)/2