How do you find the value of sin(-(11pi)/12)?

1 Answer
Aug 22, 2016

- sqrt(2 - sqrt3)/2

Explanation:

Trig table and unit circle -->
sin ((-11pi)/12) = sin (pi/12 - (12pi)/12) = sin (pi/12 - pi) = - sin (pi/12)
Evaluate sin (pi/12) by using trig identity:
2sin^2 a = 1 - cos 2a
2sin^2 (pi/12) = 1 - cos (pi/6) = 1 - sqrt3/2 = (2 - sqrt3)/2
sin^2 (pi/12) = (2 - sqrt3)/4
sin (t/12) = +- sqrt(2 - sqrt3)/2
Because sin (pi/12) is positive, take the positive answer.
Finally,
sin ((-11pi)/12) = - sin (pi/12) = - sqrt(2 - sqrt3)/2