How do you find the value of tan((11pi)/12)?

1 Answer
Nov 8, 2016

-2 + sqrt3

Explanation:

Trig unit circle -->
tan ((11pi)/12 = - tan (pi.12)
Find tan (pi/12).
Use the trig identity, and call tan (pi/12) = t
tan 2a = (2tan a)/(1 - tan^2 a)
tan (pi/6) = 1/sqrt3 = (2t)/(1 - t^2)
Cross multiply
1 - t^2 = 2sqrt3t
t^2 + 2sqrt3t - 1 = 0
Solve this quadratic equation for t by using improved quadratic formula (Socratic Search)
D = d^2 = b^2 - 4ac = 12 + 4 = 15 --> d = +- 4
There are 2 real roots:
t = -b/(2a) +- d/(2a) = - sqrt3 +- 2
t1 = - sqrt3 + 2
t2 = - sqrt3 - 2 (rejected because tan (pi/12) is positive)
Finally:
tan ((11pi)/12) = - tan (pi/12) = - t1 = - 2 + sqrt3
Check by calculator.
tan ((11pi)/12) = - tan (pi/12) = - tan 15 = - 0.267. OK