How do you find the value of tan(-(5pi)/12)?

1 Answer
Aug 15, 2017

sqrt(2 - sqrt3)/(sqrt(2 + sqrt3)

Explanation:

sin ((-5pi)/12) = sin (((7pi)/12 - pi) = - sin ((7pi)/12) =
= - sin (pi/12 + pi/2) = - (-cos pi/12) = cos (pi/12)
Find cos (pi/12) by using trig identity:
2cos^2 a = 1 + cos 2a.
In this case:
2cos^2 (pi/12) = 1 + cos (pi/6) = 1 + sqrt3/2 = (2 + sqrt3)/2
cos^2 (pi/12) = (2 + sqrt3)/4
cos (pi/12) = +- sqrt(2 + sqrt3)/2
cos pi/12 is positive, so, take the positive value.
sin^2 ([i/12) = 1 - cos^2 (pi/12) = 1 - (2 + sqrt3)/4 = (2 - sqrt3)/4
sin (pi/12) = +- sqrt(2 - sqrt3)/2
sin (pi/12) is positive, so, take the positive value.
tan (-5pi)/12 = sin (pi/12)/(cos (pi/12) =
= (sqrt(2 - sqrt3)/2)/(sqrt( 2 + sqrt3)/2) = = sqrt(2 - sqrt3)/sqrt(2 + sqrt3)