How do you FOIL (7x^7-9)(x^8-9)?

2 Answers
Jun 19, 2015

(7x^7-9)(x^8-9) = F + O + I + L

=(7x^7*x^8)+(7x^7*-9)+(-9*x^8)+(-9*-9)

=7x^15-63x^7-9x^8+81

=7x^15-9x^8-63x^7+81

Explanation:

FOIL helps you to enumerate all the terms to add when multiplying two binomials.

First: 7x^7*x^8 = 7x^15
Outside: 7x^7*-9 = -63x^7
Inside: -9*x^8 = -9x^8
Last: -9*-9 = 81

So:

(7x^7-9)(x^8-9) = F + O + I + L

=7x^15-63x^7-9x^8+81

=7x^15-9x^8-63x^7+81

...using x^a*x^b = x^(a+b)

Jun 19, 2015

I found:
=7x^15-9x^8-63x^7+81

Explanation:

Have a look:
enter image source here