How do you graph #r=2+2sintheta#?

1 Answer
Jan 4, 2017

#x^2+y^2=4(1+y^2/(x^2+y^2)+2y/sqrt(x^2+y^2))#

Explanation:

The relation between polar coordinates #(r,theta)# and Cartesian coordinates #(x,y)# is

#x=rcostheta# and #y=rsintheta# i.e. #r^2=x^2+y^2# and #y/x=tantheta#

Hence #r=2+2sintheta# can be written as

#sqrt(x^2+y^2)=2(1+sintheta)#

or #x^2+y^2=4(1+y/sqrt(x^2+y^2))^2#

or #x^2+y^2=4(1+y^2/(x^2+y^2)+2y/sqrt(x^2+y^2))#
graph{x^2+y^2=4(1+y^2/(x^2+y^2)+2y/sqrt(x^2+y^2)) [-5.21, 4.79, -0.76, 4.24]}