How do you integrate (1/(e^x+1))dx (1ex+1)dx?
2 Answers
Explanation:
Let
From
Explanation:
Note that:
1/(e^x+1) = e^(-x)/(1+e^(-x)) = -d/(dx) ln (1+e^(-x))
So:
int \ 1/(e^x+1) \ dx = -ln(1+e^(-x))+C
If you prefer, note that:
-ln(1+e^(-x)) = -ln((e^x+1)/(e^x))
color(white)(-ln(1+e^(-x))) = ln(e^x)-ln(e^x+1)
color(white)(-ln(1+e^(-x))) = x-ln(e^x+1)
So the integral can be expressed as:
int \ 1/(e^x+1) \ dx = x-ln(e^x+1)+C