How do you integrate (1/(e^x+1))dx (1ex+1)dx?

2 Answers
Mar 25, 2017

x-ln(e^x+1)+Cxln(ex+1)+C

Explanation:

Let e^(x/2)=tanthetaex2=tanθ. Then 1/2e^(x/2)dx=sec^2thetad theta12ex2dx=sec2θdθ.

intdx/(e^x+1)=2int(1/2e^(x/2)dx)/(e^(x/2)(e^x+1))=2int(sec^2thetad theta)/(tantheta(sec^2theta))=2intcostheta/sinthetad thetadxex+1=212ex2dxex2(ex+1)=2sec2θdθtanθ(sec2θ)=2cosθsinθdθ

=2lnabssintheta=2ln|sinθ|

From tantheta=e^(x/2)tanθ=ex2 draw a right triangle to see that sintheta=e^(x/2)/sqrt(e^x+1)sinθ=ex2ex+1:

=2lnabs(e^(x/2)/sqrt(e^x+1))=lnabs(e^x/(e^x+1))=x-ln(e^x+1)+C=2lnex2ex+1=lnexex+1=xln(ex+1)+C

Apr 21, 2018

int \ 1/(e^x+1) \ dx = -ln(1+e^(-x))+C = x-ln(e^x+1) + C

Explanation:

Note that:

1/(e^x+1) = e^(-x)/(1+e^(-x)) = -d/(dx) ln (1+e^(-x))

So:

int \ 1/(e^x+1) \ dx = -ln(1+e^(-x))+C

If you prefer, note that:

-ln(1+e^(-x)) = -ln((e^x+1)/(e^x))

color(white)(-ln(1+e^(-x))) = ln(e^x)-ln(e^x+1)

color(white)(-ln(1+e^(-x))) = x-ln(e^x+1)

So the integral can be expressed as:

int \ 1/(e^x+1) \ dx = x-ln(e^x+1)+C