How do you integrate (1 + e^x )/(1 - e^x)?

1 Answer
Apr 19, 2018

int (1+e^x)/(1-e^x)dx = x - 2ln abs(1-e^x)+C

Explanation:

Substitute:

t = e^x

dt = e^xdx

dx = dt/t

so:

int (1+e^x)/(1-e^x)dx = int (1+t)/(1-t)dt /t

Use partial fractions decomposition:

(1+t)/(t(1-t)) = A/t +B/(1-t)

(1+t)/(t(1-t)) = (A(1-t)+Bt)/(t(1-t))

1+t= A-At+Bt

{(A=1),(-A+B=1):}

{(A=1),(B=2):}

so:

int (1+e^x)/(1-e^x)dx = int dt/t +2 int dt/(1-t)

int (1+e^x)/(1-e^x)dx = ln abs t - 2ln abs(1-t)+C

and undoing the substitution:

int (1+e^x)/(1-e^x)dx = x - 2ln abs(1-e^x)+C