How do you integrate 3^x3x?

1 Answer
Sep 13, 2016

= 1/(ln 3) 3^x + C=1ln33x+C

Explanation:

We can work the derivative first

y = 3^xy=3x

ln y = x ln 3lny=xln3

1/y y' = ln 3

y' = ln 3 \ 3^x

implies int 3^x \ dx

= int d/dx(1/(ln 3) 3^x )\ dx

= 1/(ln 3) 3^x + C