How do you Integrate cotxdxcotxdx by using substitution?

1 Answer
Feb 26, 2015

Some basic identities that we'll need:
cos(x) = (cos(x))/(sin(x))cos(x)=cos(x)sin(x)

int (1/w) dw = ln(|w|) + C(1w)dw=ln(|w|)+C

( d sin(x))/(dx) = cos(x)dsin(x)dx=cos(x)

O.K. here we go:
int (cot(x)) dx = int ( (cos(x))/(sin(x)) ) dx(cot(x))dx=(cos(x)sin(x))dx

If we let
w = sin(x)w=sin(x) then (dw)/(dx) = cos(x)dwdx=cos(x)
so
int (cos(x))/(sin (x)) dx = int ( ((dw)/(dx))/w) dxcos(x)sin(x)dx=(dwdxw)dx

=int 1/w dw1wdw

= ln(|w|) + C=ln(|w|)+C

= ln(|sin(x)|) + C=ln(|sin(x)|)+C