How do you integrate (e^(sqrt(1+3x)))dx?

1 Answer
Jun 26, 2016

= 2/3 *e^sqrt(1+3x) ( sqrt(1+3x) - 1) + C

Explanation:

int \ (e^(sqrt(1+3x))) \ dx

sub p = sqrt(1+3x), \qquad dp = 3/(2 sqrt(1+3x)) dx = 3/(2p) dx

\implies 2/3 int \ p e^p \ dp

IBP

u = p, u' = 1
v' = e^p, v = e^p

\implies 2/3 ( p e^p - int \ e^p \ dp)

= 2/3 ( p e^p - e^p ) + C

= 2/3 *e^p ( p - 1) + C

= 2/3 *e^sqrt(1+3x) ( sqrt(1+3x) - 1) + C