How do you integrate (e^(sqrt(1+3x)))dx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Eddie Jun 26, 2016 = 2/3 *e^sqrt(1+3x) ( sqrt(1+3x) - 1) + C Explanation: int \ (e^(sqrt(1+3x))) \ dx sub p = sqrt(1+3x), \qquad dp = 3/(2 sqrt(1+3x)) dx = 3/(2p) dx \implies 2/3 int \ p e^p \ dp IBP u = p, u' = 1 v' = e^p, v = e^p \implies 2/3 ( p e^p - int \ e^p \ dp) = 2/3 ( p e^p - e^p ) + C = 2/3 *e^p ( p - 1) + C = 2/3 *e^sqrt(1+3x) ( sqrt(1+3x) - 1) + C Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 2917 views around the world You can reuse this answer Creative Commons License