How do you integrate e^x / sqrt(1-e^(2x)) dxex√1−e2xdx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Ratnaker Mehta Jun 20, 2016 arcsin(e^x)+C.arcsin(ex)+C. Explanation: We use Method of Substitution : Let e^x=tex=t, so that, e^xdx=dt.exdx=dt. Also, note that, e^(2x)=t^2.e2x=t2. Hence, I=inte^x/sqrt(1-e^(2x))dx=int1/sqrt(1-t^2)dt=arcsint=arcsin(e^x)+C.I=∫ex√1−e2xdx=∫1√1−t2dt=arcsint=arcsin(ex)+C. Answer link Related questions How do you evaluate the integral inte^(4x) dx∫e4xdx? How do you evaluate the integral inte^(-x) dx∫e−xdx? How do you evaluate the integral int3^(x) dx∫3xdx? How do you evaluate the integral int3e^(x)-5e^(2x) dx∫3ex−5e2xdx? How do you evaluate the integral int10^(-x) dx∫10−xdx? What is the integral of e^(x^3)ex3? What is the integral of e^(0.5x)e0.5x? What is the integral of e^(2x)e2x? What is the integral of e^(7x)e7x? What is the integral of 2e^(2x)2e2x? See all questions in Integrals of Exponential Functions Impact of this question 47274 views around the world You can reuse this answer Creative Commons License