How do you integrate e^x / sqrt(1-e^(2x)) dxex1e2xdx?

1 Answer
Jun 20, 2016

arcsin(e^x)+C.arcsin(ex)+C.

Explanation:

We use Method of Substitution :

Let e^x=tex=t, so that, e^xdx=dt.exdx=dt. Also, note that, e^(2x)=t^2.e2x=t2.

Hence, I=inte^x/sqrt(1-e^(2x))dx=int1/sqrt(1-t^2)dt=arcsint=arcsin(e^x)+C.I=ex1e2xdx=11t2dt=arcsint=arcsin(ex)+C.