How do you integrate f(t) = 1.4e^(0.07t)f(t)=1.4e0.07t? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer sankarankalyanam Oct 23, 2017 int 1.4e^(0.07t) do = 20 e^(0.07t)∫1.4e0.07tdo=20e0.07t Explanation: f(t) = int 1.4e^(0.07t)dtf(t)=∫1.4e0.07tdt = (7/5) inte^((7t)/100) dt=(75)∫e7t100dt u = (7t)/100, du = ((7t)/100)dx, dx = (100/7)duu=7t100,du=(7t100)dx,dx=(1007)du Apply constant multiple rule, f(t) = (cancel(7/5)cancel(100/7)) 20 int e^u du f(t) = 20 int e^u du = 20e^u But e^u = e^(0.07) :. int 1.4 e^(0.07t) dt = 20 e^(0.07t) Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 1748 views around the world You can reuse this answer Creative Commons License