How do you integrate int 2^sinxcosxdx?

1 Answer
Dec 6, 2016

The answer is =2^(sinx)/ln2+C

Explanation:

We do this by substitution

Let, sinx=u

Then, cosxdx=du

Integral, I=int2^(sinx)cosxdx

=int2^udu

Let y=2^u

lny=u ln2

y=e^(u ln2)=2^u

Therefore,

I=inte^(u ln2)du=e^(u ln2)/ln2=2^u/ln2=2^(sinx)/ln2+C