How do you integrate int (5-e^x)/(e^(2x))dx∫5−exe2xdx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer sjc Dec 3, 2016 -5/2e^(-2x)+e^-x+C−52e−2x+e−x+C Explanation: rearrange as folows. int((5-e^x)/e^(2x))dx∫(5−exe2x)dx =int(5/e^(2x)-e^x/e^(2x))dx=∫(5e2x−exe2x)dx int(5e^(-2x)-e^(-x))dx∫(5e−2x−e−x)dx =-5/2e^(-2x)+e^-x+C=−52e−2x+e−x+C Answer link Related questions How do you evaluate the integral inte^(4x) dx∫e4xdx? How do you evaluate the integral inte^(-x) dx∫e−xdx? How do you evaluate the integral int3^(x) dx∫3xdx? How do you evaluate the integral int3e^(x)-5e^(2x) dx∫3ex−5e2xdx? How do you evaluate the integral int10^(-x) dx∫10−xdx? What is the integral of e^(x^3)ex3? What is the integral of e^(0.5x)e0.5x? What is the integral of e^(2x)e2x? What is the integral of e^(7x)e7x? What is the integral of 2e^(2x)2e2x? See all questions in Integrals of Exponential Functions Impact of this question 11412 views around the world You can reuse this answer Creative Commons License