How do you integrate int 5^x-3^xdx from [0,1]?

2 Answers
May 5, 2017

The answer is =0.66

Explanation:

Let y=5^x

Taking log on both sides

lny=xln5

y=e^(xln5)

Therefore,

int5^xdx=inte^(xln5)dx=e^(xln5)/ln5=5^x/ln5

Similarly,

y=3^x

Taking log on both sides

lny=xln3

y=e^(xln3)

Therefore,

int3^xdx=inte^(xln3)dx=e^(xln3)/ln3=3^x/ln3

Therefore,

int_0^1(5^x-3^x)dx=int_0^1 5^xdx-int_0^1 3^xdx

=[5^x/ln5-3^x/ln3]_0^1

=(5/ln5-3/ln3)-(1/ln5-1/ln3)

=4/ln5-2/ln3

=0.66

May 5, 2017

The integral has value 4/ln(5) - 2/ln(3)

Explanation:

Separating the integrals, we get:

int_0^1 5^xdx - int_0^1 3^xdx

Now use the formula int(a^x)dx = a^x/ln(a).

[5^x/ln5]_0^1 - [3^x/ln3]_0^1

5/ln(5) - 5^0/ln(5) - (3/ln3 - 3^0/ln3)

4/ln(5) - 2/ln(3)

Hopefully this helps!