How do you integrate int 6^x-2^xdx from [1,e]?

1 Answer
Dec 19, 2016

The answer is =6^e/ln6-2 ^e/ln2-6/ln6+2/ln2=62.8129

Explanation:

Let u=6^x

Then, lnu=xln6

u=e^(xln6)

Let v=2^x

lnv=xln2

v=e^(xln2)

Therefore

int_1 ^e(6^x-2^x)dx

=int_1 ^e(e^(xln6)-e^(xln2))dx

= [e^(xln6)/ln6-e^(xln2)/ln2 ]_1^e

= [6^x/ln6-2^x/ln2 ]_1 ^e

=(6^e/ln6-2^e/ln2)-(6/ln6-2/ln2)

=6^e/ln6-2 ^e/ln2-6/ln6+2/ln2=62.8129