How do you integrate int 6^x-2^xdx from [1,e]? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Narad T. Dec 19, 2016 The answer is =6^e/ln6-2 ^e/ln2-6/ln6+2/ln2=62.8129 Explanation: Let u=6^x Then, lnu=xln6 u=e^(xln6) Let v=2^x lnv=xln2 v=e^(xln2) Therefore int_1 ^e(6^x-2^x)dx =int_1 ^e(e^(xln6)-e^(xln2))dx = [e^(xln6)/ln6-e^(xln2)/ln2 ]_1^e = [6^x/ln6-2^x/ln2 ]_1 ^e =(6^e/ln6-2^e/ln2)-(6/ln6-2/ln2) =6^e/ln6-2 ^e/ln2-6/ln6+2/ln2=62.8129 Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 1890 views around the world You can reuse this answer Creative Commons License