How do you integrate int cos^3xsinxdx? Calculus Techniques of Integration Integration by Trigonometric Substitution 2 Answers Andrea S. ยท 256 Jan 23, 2017 int cos^3x sinx dx = - cos^4x/4+C Explanation: Note that: -sinx dx = d(cosx) so if you substitute u= cosx you have: int cos^3x sinx dx = - int u^3 du = - u^4/4 +C = - cos^4x/4+C Answer link 256 Jan 23, 2017 Since d/dx(cos(x))=-sin(x) then intcos^3(x)sin(x)dx=-intcos^3(x)dcos(x)=-(cos^(4)(x))/4+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 5757 views around the world You can reuse this answer Creative Commons License