How do you integrate int dx/(4x^2+9)^2 using trig substitutions?

1 Answer
Mar 21, 2018

int dx/(4x^2+9)^2=1/108arctan((2x)/3)+x/(72x^2+162)+C

Explanation:

int dx/(4x^2+9)^2

=1/2int (2dx)/((2x)^2+3^2)^2

After using 2x=3tanu and 2dx=3(secu)^2*du transforms, this integral became

1/2int (3(secu)^2*du)/(81(secu)^4)

=1/54int (cosu)^2*du

=1/108int (1+cos2u)*du

=1/108u+1/216sin2u+C

=1/108u+1/216*(2tanu)/((tanu)^2+1)+C

After using 2x=3tanu, tanu=(2x)/3 and u=arctan((2x)/3) inverse transforms, I found

int dx/(4x^2+9)^2

=1/108arctan((2x)/3)+1/216*(2*(2x)/3)/(((2x)/3)^2+1)+C

=1/108arctan((2x)/3)+x/(72x^2+162)+C