How do you integrate int dx/(4x^2+9)^2 using trig substitutions? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Cem Sentin Mar 21, 2018 int dx/(4x^2+9)^2=1/108arctan((2x)/3)+x/(72x^2+162)+C Explanation: int dx/(4x^2+9)^2 =1/2int (2dx)/((2x)^2+3^2)^2 After using 2x=3tanu and 2dx=3(secu)^2*du transforms, this integral became 1/2int (3(secu)^2*du)/(81(secu)^4) =1/54int (cosu)^2*du =1/108int (1+cos2u)*du =1/108u+1/216sin2u+C =1/108u+1/216*(2tanu)/((tanu)^2+1)+C After using 2x=3tanu, tanu=(2x)/3 and u=arctan((2x)/3) inverse transforms, I found int dx/(4x^2+9)^2 =1/108arctan((2x)/3)+1/216*(2*(2x)/3)/(((2x)/3)^2+1)+C =1/108arctan((2x)/3)+x/(72x^2+162)+C Answer link Related questions How do you find the integral int1/(x^2*sqrt(x^2-9))dx ? How do you find the integral intx^3/(sqrt(x^2+9))dx ? How do you find the integral intx^3*sqrt(9-x^2)dx ? How do you find the integral intx^3/(sqrt(16-x^2))dx ? How do you find the integral intsqrt(x^2-1)/xdx ? How do you find the integral intsqrt(x^2-9)/x^3dx ? How do you find the integral intx/(sqrt(x^2+x+1))dx ? How do you find the integral intdt/(sqrt(t^2-6t+13)) ? How do you find the integral intx*sqrt(1-x^4)dx ? How do you prove the integral formula intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C ? See all questions in Integration by Trigonometric Substitution Impact of this question 6088 views around the world You can reuse this answer Creative Commons License