How do you integrate int dx/sqrt(9x^2+4)∫dx√9x2+4 using trig substitutions?
2 Answers
int \ 1/sqrt(9x^2+4) \ dx = 1/3 \ ln (sqrt(1+(9x^2)/4) + (3x)/2)+c
Explanation:
We want to find:
I = int \ 1/sqrt(9x^2+4) \ dx
For the integrand
tanu = (3x)/2 => tan^2u = (9x^2)/4
" "=> 9x^2=4tan^2u
And differentiating wrt
sec^2u(du)/dx=3/2 => 2/3sec^2u(du)/dx=1
Applying the substitution along with
I = int \ (2/3sec^2u)/sqrt(4tan^2u+4) \ du
\ \ = 2/3 \ int \ (sec^2u)/sqrt(4(tan^2u+1)) \ du
\ \ = 2/3 \ int \ (sec^2u)/sqrt(4sec^2u) \ du
\ \ = 2/3 \ int \ (sec^2u)/(2secu) \ du
\ \ = 1/3 \ int \ secu \ du
\ \ = 1/3 \ int \ secu \ du
\ \ = 1/3 \ ln (secu + tanu)+c
And again using
sec^2u = 1+tan^2u
" " = 1+(9x^2)/4
=> sec u =sqrt(1+(9x^2)/4)
And restoring the substituting we get:
I = 1/3 \ ln (sqrt(1+(9x^2)/4) + (3x)/2)+c
Start with a simple arithmetic adjustment, as clearly we are looking to clean this up first.
We then say that:
Now we note that:
Now to reverse the sub's:
Now: