How do you integrate int dx/sqrt(9x^2+4)dx9x2+4 using trig substitutions?

2 Answers
Apr 16, 2017

int \ 1/sqrt(9x^2+4) \ dx = 1/3 \ ln (sqrt(1+(9x^2)/4) + (3x)/2)+c

Explanation:

We want to find:

I = int \ 1/sqrt(9x^2+4) \ dx

For the integrand 1/sqrt(9x^2+4) a suitable substitution should be:

tanu = (3x)/2 => tan^2u = (9x^2)/4
" "=> 9x^2=4tan^2u

And differentiating wrt x we get:

sec^2u(du)/dx=3/2 => 2/3sec^2u(du)/dx=1

Applying the substitution along with 1+tan^2A-=sec^2A we get;

I = int \ (2/3sec^2u)/sqrt(4tan^2u+4) \ du
\ \ = 2/3 \ int \ (sec^2u)/sqrt(4(tan^2u+1)) \ du
\ \ = 2/3 \ int \ (sec^2u)/sqrt(4sec^2u) \ du
\ \ = 2/3 \ int \ (sec^2u)/(2secu) \ du
\ \ = 1/3 \ int \ secu \ du
\ \ = 1/3 \ int \ secu \ du
\ \ = 1/3 \ ln (secu + tanu)+c

And again using 1+tan^2A-=sec^2A we write

sec^2u = 1+tan^2u
" " = 1+(9x^2)/4
=> sec u =sqrt(1+(9x^2)/4)

And restoring the substituting we get:

I = 1/3 \ ln (sqrt(1+(9x^2)/4) + (3x)/2)+c

Apr 16, 2017

int dx/sqrt(9x^2+4)

Start with a simple arithmetic adjustment, as clearly we are looking to clean this up first.

=1/2int dx/sqrt(9/4x^2+1)

We then say that: y^2 = 9/4 x^2 implies y = 3/2x so dy = 3/2 dx.

implies 1/3int dy/sqrt(y^2+1)

Now we note that: cosh^2 z - sinh^2 z = 1 so we can sub y = sinh z which means that: dy = cosh z \ dz

implies 1/3int (cosh z \ dz)/sqrt(sinh^2 z+1)

= 1/3int dz

= 1/3 ( z + C)

Now to reverse the sub's:

= 1/3 sinh^(-1) y + C, where C is arbitrary.

= 1/3 sinh^(-1) (3/2 x) + C

Now: sinh^(-1) alpha= ln(alpha+sqrt (alpha^{2}+1})

implies 1/3 ( ln(3/2 x+sqrt ((3/2 x)^{2}+1}) )+ C