How do you integrate int dx/sqrt(x^2+2x) using trig substitutions?

1 Answer
Mar 29, 2018

The answer is =ln(|sqrt(x^2+2x)+x+1|)+C

Explanation:

Complete the square in the denominator

x^2+2x=x^2+2x+1-1=(x+1)^2-1

Let x+1=secu, =>, dx=secutanudu

Therefore, the integral is

I=int(dx)/(sqrt(x^2+2x))=int(dx)/sqrt((x+1)^2-1)

=int(secutanu du)/(sqrt(tan^2u))

=int(secudu)

=int(secu(tanu+secu)du)/(tanu+secu)

Let v=tanu+secu, =>, dv=(secutanu+sec^2u)du

Therefore,

I=int(dv)/v

=lnv

=ln(tanu+secu)

=ln(|sqrt((x+1)^2-1)+x+1|)+C

=ln(|sqrt(x^2+2x)+x+1|)+C