How do you integrate dxx2+4 using trig substitutions?

1 Answer
Dec 14, 2016

Substitute x=2sinhu quickly getting the integral to be sinh1(x2)+C

Explanation:

x=2sinhu, dx=2coshudu giving the integral as
2coshu4sinh2u+4du
=coshucoshudu because cosh2usinh2u=1
=1du
=u+C
=sinh1(x2)+C

Some people prefer to write this as ln(x+x2+4) which is equivalent, as it differs from the first solution by a fixed constant ln(12).