How do you integrate int e^(-2x)dx∫e−2xdx from [0,1][0,1]? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Andrea S. Nov 28, 2016 In general int(e^(alphax))dx = 1/alphae^(alphax)∫(eαx)dx=1αeαx Explanation: int_0^1e^(-2x)dx = -1/2e^(-2x)|_0^1=-1/2 (e^-2-1)∫10e−2xdx=−12e−2x∣10=−12(e−2−1) Answer link Related questions How do you evaluate the integral inte^(4x) dx∫e4xdx? How do you evaluate the integral inte^(-x) dx∫e−xdx? How do you evaluate the integral int3^(x) dx∫3xdx? How do you evaluate the integral int3e^(x)-5e^(2x) dx∫3ex−5e2xdx? How do you evaluate the integral int10^(-x) dx∫10−xdx? What is the integral of e^(x^3)ex3? What is the integral of e^(0.5x)e0.5x? What is the integral of e^(2x)e2x? What is the integral of e^(7x)e7x? What is the integral of 2e^(2x)2e2x? See all questions in Integrals of Exponential Functions Impact of this question 28390 views around the world You can reuse this answer Creative Commons License