How do you integrate esec2xsec2xtan2xdx from [π3,π2]?

1 Answer
Apr 21, 2017

12(e1e2)

Explanation:

ddx(sec2x)=ddx(1cos2x)=1(cos2x)2(sin2x)2
=sec2xtan2x2

Hence

ddxesec2x=esec2xddx(sec2x)=esec2xsec2xtan2x2

So

π2π3esec2xsec2xtan2xdx=12esec2xπ2π3=12(e1e2)