How do you integrate ∫esec2xsec2xtan2xdx from [π3,π2]? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer trosk Apr 21, 2017 12⋅(e−1−e−2) Explanation: ddx(sec2x)=ddx(1cos2x)=−1(cos2x)2⋅(−sin2x)⋅2 =sec2x⋅tan2x⋅2 Hence ddxesec2x=esec2x⋅ddx(sec2x)=esec2x⋅sec2x⋅tan2x⋅2 So ∫π2π3esec2xsec2xtan2xdx=12esec2x∣π2π3=12⋅(e−1−e−2) Answer link Related questions How do you evaluate the integral ∫e4xdx? How do you evaluate the integral ∫e−xdx? How do you evaluate the integral ∫3xdx? How do you evaluate the integral ∫3ex−5e2xdx? How do you evaluate the integral ∫10−xdx? What is the integral of ex3? What is the integral of e0.5x? What is the integral of e2x? What is the integral of e7x? What is the integral of 2e2x? See all questions in Integrals of Exponential Functions Impact of this question 3000 views around the world You can reuse this answer Creative Commons License