How do you integrate int e^-x/(1+e^-x)dx?

3 Answers
Mar 10, 2018

ln|1/(1+e^-x)|+C.

Explanation:

Subst. 1+e^-x=t," so that, "-e^-xdx=dt.

:. I=inte^-x/(1+e^-x)dx,

=int-1/tdt=-int1/tdt,

=-ln|t|,

=ln|t|^-1,

rArr I=ln|1/(1+e^-x)|+C.

Mar 10, 2018

The answer is =-ln(1+e^-x)+C

Explanation:

Perform the substitution

u=1+e^-x, =>, du=-e^-xdx

Therefore,

int(e^-xdx)/(1+e^-x)=-int(du)/(u)

=-lnu

=-ln(1+e^-x)+C

Mar 10, 2018

I=int(e^-x)/(1+e^-x)dx=int((-1)d/dx(1+e^-x))/(1+e^-x)=-ln|1+e^-x|
I=ln|1/(1+e^-x)|+c

Explanation:

I=int(e^-x)/(1+e^-x)dx,
take, e^-x=t=>e^-x(-1)dx=dt=>e^-xdx=-dt
I=-intdt/(1+t)=-ln|1+t|+c=-ln|1+e^-x|+c
I=ln|1/(1+e^-x)|+c