How do you integrate int (e^x-e^-x)/(e^x+e^-x)dx? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Cesareo R. Nov 29, 2016 log(e^x+e^(-x))+C Explanation: Note that d/(dx)(e^x+e^(-x))=e^x-e^(-x) so (e^x-e^(-x))/(e^x+e^(-x))= d/(dx)log(e^x+e^(-x)) and finally int (e^x-e^-x)/(e^x+e^-x)dx = int d/(dx)log(e^x+e^(-x))dx=log(e^x+e^(-x))+C Answer link Related questions How do you evaluate the integral inte^(4x) dx? How do you evaluate the integral inte^(-x) dx? How do you evaluate the integral int3^(x) dx? How do you evaluate the integral int3e^(x)-5e^(2x) dx? How do you evaluate the integral int10^(-x) dx? What is the integral of e^(x^3)? What is the integral of e^(0.5x)? What is the integral of e^(2x)? What is the integral of e^(7x)? What is the integral of 2e^(2x)? See all questions in Integrals of Exponential Functions Impact of this question 39296 views around the world You can reuse this answer Creative Commons License