How do you integrate int (e^x+e^-x)/(e^x-e^-x)dx∫ex+e−xex−e−xdx?
1 Answer
Feb 20, 2017
Explanation:
We know that
•coshx = (e^x + e^-x)/2∙coshx=ex+e−x2
•sinhx = (e^x- e^-x)/2∙sinhx=ex−e−x2
This integral can be rewritten as
int coshx/sinhx dx∫coshxsinhxdx , wherecoshxcoshx andsinhxsinhx represent the hyperbolic trigonometric functions
Now use a substitution to solve. Let
int coshx/u * (du)/coshx ∫coshxu⋅ducoshx
int 1/u du∫1udu
ln|u| + Cln|u|+C
ln|sinhx| + Cln|sinhx|+C
If you wish, the answer can be written as
ln|1/2(e^x - e^-x)| + Cln∣∣∣12(ex−e−x)∣∣∣+C
Hopefully this helps!