How do you integrate int e^-xtan(e^-x)dxextan(ex)dx?

1 Answer
Dec 13, 2016

inte^-xtan(e^-x)dx=ln(abscos(e^-x))+Cextan(ex)dx=ln(cos(ex))+C

Explanation:

inte^-xtan(e^-x)dxextan(ex)dx

First, let u=e^-xu=ex. Differentiating this shows that du=-e^-xdxdu=exdx.

=-inttan(e^-x)(-e^-x)dx=tan(ex)(ex)dx

=-inttan(u)du=tan(u)du

This is a standard integral, but we can show how to integrate it by rewriting tangent as sine divided by cosine:

=-intsin(u)/cos(u)du=sin(u)cos(u)du

Now, let v=cos(u)v=cos(u). This implies that dv=-sin(u)dudv=sin(u)du.

=int(-sin(u))/cos(u)du=sin(u)cos(u)du

=int(dv)/v=dvv

This is also a standard (and very important) integral:

=ln(absv)+C=ln(|v|)+C

=ln(abscos(u))+C=ln(|cos(u)|)+C

=ln(abscos(e^-x))+C=ln(cos(ex))+C