How do you integrate int e^-xtan(e^-x)dx∫e−xtan(e−x)dx?
1 Answer
Dec 13, 2016
Explanation:
inte^-xtan(e^-x)dx∫e−xtan(e−x)dx
First, let
=-inttan(e^-x)(-e^-x)dx=−∫tan(e−x)(−e−x)dx
=-inttan(u)du=−∫tan(u)du
This is a standard integral, but we can show how to integrate it by rewriting tangent as sine divided by cosine:
=-intsin(u)/cos(u)du=−∫sin(u)cos(u)du
Now, let
=int(-sin(u))/cos(u)du=∫−sin(u)cos(u)du
=int(dv)/v=∫dvv
This is also a standard (and very important) integral:
=ln(absv)+C=ln(|v|)+C
=ln(abscos(u))+C=ln(|cos(u)|)+C
=ln(abscos(e^-x))+C=ln(∣∣cos(e−x)∣∣)+C