How do you integrate int_ln2^ln3(e^x/sqrt(e^(2x)+1)dx ?

int_ln2^ln3e^x/sqrt(e^(2x)+1)dx

3 Answers
Mar 23, 2018

int_ln2^ln3e^x/sqrt(e^(2x)+1)dx=ln((sqrt10+3)/(sqrt5+2))

Explanation:

For int_ln2^ln3e^x/sqrt(e^(2x)+1)dx

let t=e^x, then dt=e^xdx

and int_2^3 1/sqrt(t^2+1)dt

= [ln|sqrt(t^2+1)+t|]_2^3

= ln|sqrt10+3|-ln|sqrt5+2|

= ln((sqrt10+3)/(sqrt5+2))

Mar 23, 2018

The answer is =0.37

Explanation:

Calculate the indefinite integral first

Perform the substitution

u=e^x, =>, du=e^xdx

Therefore,

I=int(e^xdx)/(sqrt(e^(2x)+1))

=int(du)/(sqrt(u^2+1))

Let u=tantheta, =>, du=sec^2thetad theta

sqrt(u^2+1)=sqrt(tan^2theta+1)=sectheta

Therefore,

I=int(sec^2thetad theta)/(sectheta)=int sec thetad theta

=int(sectheta(sectheta+tantheta)d theta)/(sectheta+tantheta)

Let,

v=sectheta+tantheta, =>,

dv=(secthetatantheta+sec^2theta)d theta

So,

I=int(dv)/(v)

=ln(v)

=ln(sectheta+tantheta)

=ln(sqrt(1+u^2)+u)

=ln(sqrt(1+e^(2x))+e^x)+C

Now, compute the definite integral

int_ln2^ln3(e^xdx)/(sqrt(e^(2x)+1))= [ln(sqrt(1+e^(2x))+e^x)]_ln2^ln3

=(ln(sqrt(1+e^(2ln3))+e^ln3))-(ln(sqrt(1+e^(2ln2))+e^ln2))

=(ln(sqrt10+3))-(ln(sqrt5+2))

=0.37

Mar 23, 2018

I=ln|(3+sqrt10)/(2+sqrt5)|

Explanation:

We know that,

color(red)(e^(log_eX)=X=>e^lnX=X

color(red)(int1/(sqrt(X^2+k))dx=ln|X+sqrt(X^2+k)|+c

Here,

I=int_ln2^ln3(e^x/sqrt(e^(2x)+1))dx

Let, e^x=t=>e^xdx=dt,and

x=ln2=>t=e^ln2=2,and x=ln3=>t=e^ln3=3

:.I=int_2^3(dt)/sqrt(t^2+1

=>I=[ln|t+sqrt(t^2+1)|]_2^3

=>I= ln|3+sqrt(3^2+1)|-ln|2+sqrt(2^2+1)|

=>I=ln|3+sqrt10|-ln|2+sqrt5|

=>I=ln|(3+sqrt10)/(2+sqrt5)|