How do you integrate int sec^2(2x-1)?

1 Answer
Jan 10, 2017

intsec^2(2x-1)dx=1/2tan(2x-1)+C

Explanation:

Note that d/dxtan(x)=sec^2(x). This implies that intsec^2(x)dx=tan(x)+C.

Apply the substitution u=2x-1, which implies that du=2dx:

intsec^2(2x-1)dx=1/2intsec^2(2x-1)(2dx)=1/2intsec^2(u)du

As we saw before, intsec^2(u)du=tan(u)+C:

intsec^2(2x-1)dx=1/2tan(u)+C

Returning to the original variable x, use u=2x-1:

intsec^2(2x-1)dx=1/2tan(2x-1)+C