How do you integrate sin2(2x)dx?

1 Answer
Mar 15, 2017

18(4sin(4x))+C

Explanation:

Use the cosine double-angle identity to rewrite the function:

cos(2α)=12sin2(α) sin2(α)=1cos(2α)2

Then:

sin2(2x)=1cos(4x)2

So:

sin2(2x)dx=12(1cos(4x))dx=12dx12cos(4x)dx

The second can be solved with the substitution u=4xdu=4dx:

sin2(2x)dx=12x184cos(4x)dx=12x18cos(u)du

The integral of cosine is sine:

sin2(2x)dx=1218sin(u)=18(4sin(u))=18(4sin(4x))+C