How do you integrate int sin^2alphacos^2alpha?

1 Answer
Jan 4, 2017

= 1/8 int \ 1 - cos 4 alpha \ d alpha

Explanation:

int sin^2alphacos^2alpha \ d alpha

= int (sinalpha \ cos alpha)^2 \ d alpha

use sine double-angle sin 2 alpha = 2 sin alpha cos alpha
= int (1/2 sin 2 alpha )^2 \ d alpha

= 1/4 int sin^2 2 alpha \ d alpha

use cosine double-angle formula: cos 2 A = 1 - 2 sin^2 A with A = 2 alpha

= 1/4 int (1 - cos 4 alpha)/2 \ d alpha

It's trivial from there :)