How do you integrate int sqrt(1-4x-2x^2) using trig substitutions?

1 Answer
Aug 20, 2016

int (sqrt(1-4x-2x^2))dx = 3 sqrt(2)/8(2 arcsin(sqrt(2/3) (1 + x)) + sin(2 arcsin(sqrt(2/3) (1 + x))))+C

Explanation:

int (sqrt(1-4x-2x^2))dx=sqrt(3)int(sqrt(1-2/3(x+1)^2))dx

now calling sqrt(2/3)(x+1) = sin y

sqrt(2/3) dx = cos y dy and

int (sqrt(1-4x-2x^2))dx equiv sqrt(3) sqrt(3/2) int cos^2y dy = 3/sqrt(2)(y/2+1/4 sin(2y)) + C and after substituting

y = arcsin(sqrt(2/3)(x+1))

int (sqrt(1-4x-2x^2))dx = 3 sqrt(2)/8(2 arcsin(sqrt(2/3) (1 + x)) + sin(2 arcsin(sqrt(2/3) (1 + x))))+C