How do you integrate 13+25x2 using trig substitutions?

1 Answer
Nov 25, 2016

To integrate an irrational function with a sum of squares under the root, you use the substitution with the tangent.

Explanation:

First reduce the radical to a sum of squares:

(13+25x2)dx=15 (135)2+x2dx

Pose x=135tan(t) and as dtan(t)dt=sec2(t)

dx=135sec2(t)dt

(13+25x2)dx=15(1325+1325tan2(t)135sec2(t)dt=13125(1+tan2(t)sec2(t)dt

Use the trigonometric identity:

1+tan2t=sec2t

(13+25x2)dx=13125(sec2(t)sec2(t)dt=
=13125|sec(t)|3dt.

Now, to integrate this last integral let's limit ourselves in the interval t[π2,π2] where sec(t) is positive and use integration by parts:

sec3(t)dt=(sectsec2t)dt=sectd(tant)=secttanttantd(sect)=secttanttan2tsectdt=

but tan2t=sec2t1, so

sec3(t)dt=secttant+(sectsec3t)dt=secttant+sectdtsec3(t)tdt

or

2sec3(t)dt=secttant+sectdt

Finally:

sec3(t)dt=12secttant+12ln(|sect+tant|)

Now reverse the substitution:

tant=513x

and sect=1+tan2(t)=1+2513x2

So:

(13+25x2)dx=5213x1+2513x2+12ln(513x+1+2513x2)