First reduce the radical to a sum of squares:
∫(√13+25x2)dx=15∫⎛⎜⎝
⎷(√135)2+x2⎞⎟⎠dx
Pose x=√135tan(t) and as dtan(t)dt=sec2(t)
dx=√135sec2(t)dt
∫(√13+25x2)dx=15∫(√1325+1325tan2(t)√135sec2(t)dt=13125∫(√1+tan2(t)sec2(t)dt
Use the trigonometric identity:
1+tan2t=sec2t
∫(√13+25x2)dx=13125∫(√sec2(t)sec2(t)dt=
=13125∫|sec(t)|3dt.
Now, to integrate this last integral let's limit ourselves in the interval t∈[−π2,π2] where sec(t) is positive and use integration by parts:
∫sec3(t)dt=∫(sect⋅sec2t)dt=∫sect⋅d(tant)=secttant−∫tant⋅d(sect)=secttant−∫tan2t⋅sectdt=
but tan2t=sec2t−1, so
∫sec3(t)dt=secttant+∫(sect−sec3t)dt=secttant+∫sectdt−∫sec3(t)tdt
or
2∫sec3(t)dt=secttant+∫sectdt
Finally:
∫sec3(t)dt=12secttant+12ln(|sect+tant|)
Now reverse the substitution:
tant=5√13x
and sect=√1+tan2(t)=√1+2513x2
So:
∫(√13+25x2)dx=52√13x√1+2513x2+12ln(∣∣∣5√13x+√1+2513x2∣∣∣)