How do you integrate int sqrt(4-9x^2)49x2 using trig substitutions?

2 Answers
Dec 30, 2016

= 1/2 x sqrt (4- 9 x^2) + 2/3 sin^(-1) (3/2 x) + C=12x49x2+23sin1(32x)+C

Explanation:

One obvious thing here is to use a sub to get the integrand looking like this

sqrt(4-4 sin^2 y) = 2 cos y44sin2y=2cosy, ie using the Pythagorean identity

so we can say that 9 x^2 = 4 sin^2 y9x2=4sin2y, and the sub we are going to try is x = 2/3 sin y, \ dx = 2/3 cos y \ dy

The integration is then

int 2 cos y * 2/3 cos y \ dy

= 4/3int cos^2 y \ dy

use the double-angle identity cos 2 A = 2 cos^2 A - 1

= 2/3int cos 2y + 1 \ dy

= 2/3 ( 1/2sin 2y + y ) + C

now sin 2y = 2 sin y cos y = 2 * 3/2 x * sqrt (1- (3/2 x)^2)

giving

= x sqrt (1- (3/2 x)^2) + 2/3 sin^(-1) (3/2 x) + C

= 1/2 x sqrt (4- 9 x^2) + 2/3 sin^(-1) (3/2 x) + C

Dec 30, 2016

int sqrt(4-9x^2)dx = x/2 sqrt (4-9x^2) +2/3arcsin(3/2x)

Explanation:

Write the integral as:

int sqrt(4-9x^2)dx = 2intsqrt(1-(3/2x)^2)dx

Now substitute:

x=2/3 sint, dx=2/3cost

int sqrt(4-9x^2)dx = 4/3 int sqrt(1-sin^2t) cost dt= 4/3 int cos^2tdt

To solve the last integral, we note that:

cos2x = (2cos^2x-1)=> cos^2x = (cos2x+1)/2

so we have:

int sqrt(4-9x^2)dx = 2/3 (int cos2t dt + int dt)= 1/3(sin2t+2t)

Substituting back x:

sin2t= 2 sint cost = 3xsqrt (1-(3/2x)^2)

t=arcsin(3/2x)

Finally:

int sqrt(4-9x^2)dx = xsqrt (1-(3/2x)^2) +2/3arcsin(3/2x)