How do you integrate int sqrt(e^(8x)-9)∫√e8x−9 using trig substitutions?
1 Answer
Explanation:
intsqrt(e^(8x)-9)dx∫√e8x−9dx
Apply the substitution
Note that
=intsqrt((e^(4x))^2-9)dx=∫√(e4x)2−9dx
=intsqrt(9sec^2theta-9)(1/4tanthetad theta)=∫√9sec2θ−9(14tanθdθ)
=3/4intsqrt(sec^2theta-1)(tanthetad theta)=34∫√sec2θ−1(tanθdθ)
Note that
=3/4inttan^2thetad theta=34∫tan2θdθ
=3/4int(sec^2theta-1)d theta=34∫(sec2θ−1)dθ
=3/4intsec^2thetad theta-3/4intd theta=34∫sec2θdθ−34∫dθ
=3/4tantheta-3/4theta+C=34tanθ−34θ+C
From
=3/4(sqrt(e^(8x)-9)/3)-3/4"arcsec"(e^(4x)/3)+C=34(√e8x−93)−34arcsec(e4x3)+C
=(sqrt(e^(8x)-9)-3"arcsec"(e^(4x)/3))/4+C=√e8x−9−3arcsec(e4x3)4+C