How do you integrate int sqrt(e^(8x)-9)e8x9 using trig substitutions?

1 Answer
Sep 15, 2016

(sqrt(e^(8x)-9)-3"arcsec"(e^(4x)/3))/4+Ce8x93arcsec(e4x3)4+C

Explanation:

intsqrt(e^(8x)-9)dxe8x9dx

Apply the substitution e^(4x)=3secthetae4x=3secθ. Thus 4e^(4x)dx=3secthetatanthetad theta4e4xdx=3secθtanθdθ.

Note that dx=(3secthetatanthetad theta)/(4e^(4x))=(3secthetatanthetad theta)/(4(3sectheta))=1/4tanthetad thetadx=3secθtanθdθ4e4x=3secθtanθdθ4(3secθ)=14tanθdθ.

=intsqrt((e^(4x))^2-9)dx=(e4x)29dx

=intsqrt(9sec^2theta-9)(1/4tanthetad theta)=9sec2θ9(14tanθdθ)

=3/4intsqrt(sec^2theta-1)(tanthetad theta)=34sec2θ1(tanθdθ)

Note that tan^2theta=sec^2theta-1tan2θ=sec2θ1, so:

=3/4inttan^2thetad theta=34tan2θdθ

=3/4int(sec^2theta-1)d theta=34(sec2θ1)dθ

=3/4intsec^2thetad theta-3/4intd theta=34sec2θdθ34dθ

=3/4tantheta-3/4theta+C=34tanθ34θ+C

From e^(4x)=3secthetae4x=3secθ, we see that theta="arcsec"(e^(4x)/3)θ=arcsec(e4x3). Also, since sectheta=e^(4x)/3secθ=e4x3, we see that the hypotenuse is e^(4x)e4x, the adjacent side is 33, and the opposite side is sqrt(e^(8x)-9)e8x9. Thus tantheta=sqrt(e^(8x)-9)/3tanθ=e8x93.

=3/4(sqrt(e^(8x)-9)/3)-3/4"arcsec"(e^(4x)/3)+C=34(e8x93)34arcsec(e4x3)+C

=(sqrt(e^(8x)-9)-3"arcsec"(e^(4x)/3))/4+C=e8x93arcsec(e4x3)4+C