int(sqrt(x^2-25))/xdx
color(red)(x=5secu)
color(red)((dx)/(du)=5secutanu
I=int(sqrt(25sec^2u-25))/(5secu) xx5secutanudu
I=int(sqrt(25(sec^2u-1)))/(5secu)xx5secutanudu
now color(red)(sec^2u=1+tan^2u)
:.color(red)(sec^2u-1=tan^2u)
=>I=int(sqrt(25tan^2u)/(5secu))xx5secutanudu
I=int(5tanu)/(5secu)xx5secutanudu
now simplifying the algebra.
I=int(cancel(5)tanu)/(cancel(5)cancel(secu))xx5cancel(secu)tanudu
I=5int(tan^2u)du
using color(red)(sec^2u=1+tan^2u) once more.
I=5int(sec^2u-1)du
I=5tanu-5u+C
but
color(red)(x=5secu=>u=sec^-1(x/5))
:. I=5tan(sec^-1(x/5))-5sec^-1x+C
If you are used to hyperbolic functions the substitution
x=5coshu would make it less messy!