How do you integrate int sqrt(x^2-25)/x using trig substitutions?

1 Answer
Oct 21, 2016

int(sqrt(x^2-25))/xdx

color(red)(x=5secu)

color(red)((dx)/(du)=5secutanu

I=int(sqrt(25sec^2u-25))/(5secu) xx5secutanudu

I=int(sqrt(25(sec^2u-1)))/(5secu)xx5secutanudu

now color(red)(sec^2u=1+tan^2u)

:.color(red)(sec^2u-1=tan^2u)

=>I=int(sqrt(25tan^2u)/(5secu))xx5secutanudu

I=int(5tanu)/(5secu)xx5secutanudu

now simplifying the algebra.

I=int(cancel(5)tanu)/(cancel(5)cancel(secu))xx5cancel(secu)tanudu

I=5int(tan^2u)du

using color(red)(sec^2u=1+tan^2u) once more.

I=5int(sec^2u-1)du

I=5tanu-5u+C

but

color(red)(x=5secu=>u=sec^-1(x/5))

:. I=5tan(sec^-1(x/5))-5sec^-1x+C

If you are used to hyperbolic functions the substitution

x=5coshu would make it less messy!