Let I=intsqrt(x^2+4x+5)dx.
sqrt(x^2+4x+5)=sqrt{(x+2)^2+1},so, we take the Trigo. Substn.
x+2=tany", so that, (1) : "dx=sec^2 ydy, &
(2) : sqrt(x^2+4x+5)=sqrt{tan^2 y+1}=sec y.
:. I=intsec ysec^2 ydy=intsec^3 ydy=intu*vdy......
[u=sec y, v=sec^2 y]
=uintvdy-int((du)/dx*intvdy)dy..........................[IBP]
=sec yintsec^2 ydy-int{sec ytan yintsec^2 y dy}dy
=sec ytan y-int{sec ytan ytan y}dy
=sec ytan y-intsec ytan^2 ydy
=sec ytan y-intsec y(sec^2 y-1)dy
=secytany-intsec^3ydy+intsecydy, i.e.,
I=secytany-I+ln|secy+tany|
:. I+I=2I=secytany+ln|secy+tany|
:. I=1/2[secytany+ln|secy+tany|]
=1/2[(x+2)sqrt(x^2+4x+5)+ln|x+2+sqrt(x^2+4x+5)|]+C.
Enjoy Maths.!