How do you integrate int sqrt((x+3)^2-100) using trig substitutions?

1 Answer
Nov 2, 2016

The answer is =(x+3)/2(sqrt(((x+3)^2-100)))-50ln((sqrt(((x+3)^2)-100)+(x+3))/10)+C

Explanation:

Let u=x+3 then du=dx
int(sqrt((x+3)^2-100))dx=int(sqrt(u^2-100))du
Then let u=10sectheta=>du=10secthetatantheta
int(sqrt(u^2-100))du=int(sqrt(100sec^2theta-100))10secthetatantheta(d(theta))
=100intsecthetatan^2thetad(theta)
=100intsectheta(sec^2theta-1)d(theta)
=100int(sec^3theta-sectheta)d(theta)
intsec^3thetad(theta)=1/2intsecthetad(theta)+1/2secthetatantheta
and intsecthetad(theta)=ln(tantheta+sectheta)
intsec^3thetad(theta)=1/2ln(tantheta+sectheta)+1/2secthetatantheta
100int(sec^3theta-sectheta)d(theta)=100(1/2secthetatantheta-1/2ln(tantheta+sectheta))