How do you integrate ∫tan5(x4)?
1 Answer
Given
Begin with a substitution for
u=x4⇒du=14dx⇒4du=dx
We now have:
4∫tan5(u)du
Break up
4∫tan2(u)⋅tan3(u)du
Use the trigonometric identity
4∫(sec2(u)−1)tan3(u)du
Distribute
4∫sec2(u)tan3(u)−tan3(u)du
Split the integral:
4∫sec2(u)tan3(u)du−4∫tan3(u)du
For the LH integral, we can perform a substitution:
4∫sec2(u)tan3(u)du⇒4∫z3dz
This is basic integral. We will now move on to the RHS.
4∫tan3(u)du
Break up
4∫tan2(u)⋅tan(u)du
Apply trigonometric identity
4∫(sec2(u)−1)tan(u)du
Distribute
4∫sec2(u)tan(u)−tan(u)du
Split the integral:
4∫sec2(u)tan(u)du−4∫tan(u)du
For the LH integral, a substitution:
r=tan(u)⇒dr=sec2(u)du
4∫sec2(u)tan(u)du=4∫rdr
This is a basic integral, as is
We have:
4∫z3dz−[4∫rdr−4∫tan(u)du]
We integrate, then substitute back in for all of the variables.
4(14z4)−[4(12r2)−4ln|sec(u)|]+C