How do you integrate tan5(x4)?

1 Answer
Mar 7, 2017

Given tan5(x4)dx

Begin with a substitution for x4:

u=x4du=14dx4du=dx

We now have:

4tan5(u)du

Break up tan5(u):

4tan2(u)tan3(u)du

Use the trigonometric identity tan2(θ)=sec2(θ)1:

4(sec2(u)1)tan3(u)du

Distribute tan3:

4sec2(u)tan3(u)tan3(u)du

Split the integral:

4sec2(u)tan3(u)du4tan3(u)du

For the LH integral, we can perform a substitution:

z=tan(u)dz=sec2(u)du

4sec2(u)tan3(u)du4z3dz

This is basic integral. We will now move on to the RHS.

4tan3(u)du

Break up tan3(u):

4tan2(u)tan(u)du

Apply trigonometric identity tan2(θ)=sec2(θ)1:

4(sec2(u)1)tan(u)du

Distribute tan(u):

4sec2(u)tan(u)tan(u)du

Split the integral:

4sec2(u)tan(u)du4tan(u)du

For the LH integral, a substitution:

r=tan(u)dr=sec2(u)du

4sec2(u)tan(u)du=4rdr

This is a basic integral, as is 4tan(u)du.

We have:

4z3dz[4rdr4tan(u)du]

We integrate, then substitute back in for all of the variables.

4(14z4)[4(12r2)4ln|sec(u)|]+C

tan4(u)2tanu+4ln|sec(u)|+C

tan4(x4)2tan2(x4)+4lnsec(x4)+C